Question			Marking details		Marks Available
5.	(a)	(i)	Wire with rule positioned (1) and croc clip (1) Either c orrectly positioned ohme correctly position ammeter and w		3
		(ii)	[Different] length[s] of wire (1) Either measure V and I or measu	re / read <i>R</i> (1)	2
		(iii)	Diameter of wire [not radius or cs micrometer / vernier calliper	a by accept "thickness"] with	1
		(iv)	cross-sectional area fro πr^2 or $\pi (dr)$ graph of <i>R</i> against <i>l</i> [or mean value ρ = gradient × [cs]a [or mean value [NB <i>R</i> = <i>V</i> / <i>I</i> given here can be use [NB Finding <i>R</i> for a measured lend calculated \rightarrow 1 only]	e of R/l (1) e of $R/l \times csa$ (1) d to credit 2 nd mark of (ii)]	3
	<i>(b)</i>	(i)	$R \propto l(1) \therefore R$ <u>increases</u> as strain g $R \propto {}^{1}/A(1) \therefore R$ <u>increases</u> as the st [or $R = \frac{\rho l}{A}$ or $\rho = \frac{RA}{l}(1), A$ incre	rain gauge gets thinner (1) ases & <i>l</i> decreases (1)	
			ρ doesn't change /constant (1) so t		4
		(ii)	[csa =] $0.2 \times 10^{-3} \times 0.0012 \times 10^{-3}$ $\rho = 4.9 \times 10^{-7} \Omega \text{ m} ((\text{unit})) (1)$ [ec [ecf on powers of 10 in both A and	f from csa calculation]	2
		(iii)	Either $1.6 = \frac{650}{650 + R} \times 6(1)$ Manipulation (1); $R = 1788 \Omega$ (1)	Or $I = \frac{1.6}{650} (=2.46 \times 10^{-3} \text{ A}) (1)$ $R = \frac{(6-1.6)(1)}{2.46 \times 10^{-3}} = 1788 \Omega (1)$	3
				1	[18]

Question			Marking details	Marks Available
1	(a)	(i)	I. 2 arrows drawn upwards at right angles to wave fronts	1
			II. The waves travel more slowly in the shallow water (1) as the propagation direction bends towards the normal (or equiv) (1)	2
		(ii)	I. Wavelength = 8 $[\pm 1]$ mm	1
			II. $f = \frac{0.33 \text{ m s}^{-1}}{0.008 \text{ m}} (1) \text{ [or by impl.] (e.c.f. on } \lambda) = 40 \text{ or } 41 \text{ Hz} (1)$	
			[-1 on wrong power of 10]	2
			III. Attempt clearly based upon unchanged $f \underline{\text{or}} \frac{v_s}{v_d} = \frac{\lambda_s}{\lambda_d} (1)$ [or by	
			impl.] $y = 0.21 [+0.02 \text{ m s}^{-1}] (a + f + a + f + (1))$	2
			$v = 0.21 \ [\pm 0.02 \ \text{m s}^{-1}] \ (\text{e.c.f. on } f) \ (1)$	2
	<i>(b)</i>	(i)	Total internal reflection	1
		(ii)	$1.58 \sin 72^{\circ} = n_{\text{clad}} \sin 90^{\circ} \text{ [or by impl.] (1)}$	
			$n_{\text{clad}} = 1.58 \sin 72^{\circ} \text{ or } \sin 90^{\circ} = 1 \text{ or } \text{by impl. (1)}$	
			$n_{\text{clad}} = 1.50(1)$	3
			[Angles transposed, leading to $n = 1.64$, or other transposition errors $\rightarrow 1 \text{ mark only}$]	
		(iii)	Light takes longer by zigzag paths [accept 'multimode dispersion']	
			[Accept – different paths give different times] (1) A piece of data will be 'smeared out' over time on arrival or may	
			overlap other pieces of data (1) [Accept 'pulse broadening' only if	
			first mark gained by reference to zigzag paths, i.e. not 'multimode dispersion' + 'mulae breadening' only (2)]	2
			dispersion' + 'pulse broadening' only (2)]	
				[14]

PH2 Mark Scheme – January 2010

Question Marking			Marking details	Marks Available
2.	(a)	(i)	 At [centres of] bright fringes: Path lengths from slits differ by 0, λ, 2λ [if sources in phase] Waves arrive in phase or sketch graphs of in-phase waves Waves interfere constructively or displacements add to make larger displacement. Assume slits act as coherent sources or waves diffract at slits 	4
		(ii)	Separation of centres of fringes = $\frac{4.0}{3}$ mm / 1.3 mm / 1.33 mm [or equiv, or by impl.] (1) Correct data substitution into $\lambda = \frac{ay}{D}$ ignoring factors of 10 [e.c.f.] (1)	
			$\lambda = 6.3 \times 10^{-7} \mathrm{m} (1)$	3
	<i>(b)</i>	(i)	$2[.00] \times 10^{-6} \text{ m}$	1
		(ii)	Attempt to use $n\lambda = d \sin \theta$ with $d = 2.00 \times 10^{-6}$ m [e.c.f.] (1) $\theta = 72^{\circ}$ (1) n = 3 (1) $\lambda = 6.3 \times 10^{-7}$ m (1) [e.c.f. only on d from (b)(i)]	4
	(c)		More uncertainty with Young's method (1) because either fringe separation is small and difficult to measure [whereas grating beams are well spaced] or fringes are not sharp compared to the beams (1) [accept: <i>d</i> can be measured more accurately for grating [because there are more slits]	2
				[14]

Question			Marking details	Marks Available	
3	(a)	(i)	in phase (1) in antiphase [accept <u>completely</u> or 180° or π out of phase] (1)	2	
		(ii)	Use stroboscope (1) and adjust flash frequency for slow motion / expect to see A moving up as C moves down etc. (1) [Or: Use a video camera and replay in slow motion / expect to see A moving up as C moves down etc.]	2	
	<i>(b)</i>	(i)	Either: <u>Amplitude</u> constant [or falls off] for progressive wave (1) as we go through the medium; goes up and down [regularly] form stationary wave (1) Or: <u>Phase</u> changes steadily with distance for progressive waves (1);		
			reverses at nodes [otherwise constant] form stationary waves (1) ["Stationary waves have nodes, progressive waves don't" \rightarrow 1]	2	
		(ii)	Reflections give rise to waves propagating in both directions (1); interference between these [progressive] waves gives stationary wave (1)	2	
	(c)	(i)	0.6 m	1	
		(ii)	30 m s^{-1} ((unit))	1	
				[10]	
4.	(a)	(i)	Photon energy	1	
		(ii)	$E_{k \max}$ is the maximum KE of emitted electron (1) ϕ is the minimum energy for an electron to escape (1). What is left over of the photon's energy after the escape is its kinetic	3	
	(b)	(i)	energy. (1) Graph: Points [±0.2 divisions] (1); line [not necessarily extrapolated] (1)	2	
		(ii)	I. $3.8 [\pm 0.2] \times 10^{-19} \text{ J}$ II. $\frac{(4.04 - 0.79) \times 10^{-19} \text{ J}}{(11.8 - 6.9) \times 10^{14} \text{ Hz}} \left[\text{ or } \frac{\Delta y}{\Delta x} \text{ from graph} \right] (1)$	1	
			$= 6.6 [\pm 0.4] \times 10^{-34} $ Js (1) NB. Must be value from working.	2	
		(iii)	Graph line drawn with same slope (1) and to left of / above that for sodium (1)	2	
				[11]	

Question			Marking details	Marks Available
5	(a)		$\Delta E = \frac{hc}{\lambda} [\text{or } \Delta E = hf \text{ and } c = f\lambda] [\text{or by impl.}] (1)$	
			$\lambda = 6.95 \times 10^{-7} \mathrm{m} (1)$	2
	(b)	(i)	Absorption [accept excitation]	1
		(ii)	Increases atom's [accept electron's]energy [accept 'excites atom' unless excitation credited in part (i)](1)	1
	(c)	(i)	Stimulated emission	1
		(ii)	Any 2×1 of: frequency [or wavelength or energy] / phase / propagation direction / polarisation	2
	(d)	(i)	More electrons in the higher (middle) level than the lower [or	1
		(ii)	ground] Arrow shown on Process B from lowest level to top level.	1
			✓	
		(iii)	Shorter time at top level (1) to maintain population of middle level	
			(1)	2
				[11]